首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31838篇
  免费   5551篇
  国内免费   4736篇
化学   24232篇
晶体学   552篇
力学   1771篇
综合类   419篇
数学   3397篇
物理学   11754篇
  2024年   37篇
  2023年   631篇
  2022年   732篇
  2021年   1049篇
  2020年   1284篇
  2019年   1275篇
  2018年   1084篇
  2017年   1100篇
  2016年   1496篇
  2015年   1576篇
  2014年   1853篇
  2013年   2386篇
  2012年   2893篇
  2011年   3073篇
  2010年   2225篇
  2009年   2027篇
  2008年   2292篇
  2007年   2199篇
  2006年   1891篇
  2005年   1670篇
  2004年   1232篇
  2003年   1052篇
  2002年   1052篇
  2001年   857篇
  2000年   733篇
  1999年   685篇
  1998年   506篇
  1997年   465篇
  1996年   386篇
  1995年   373篇
  1994年   375篇
  1993年   288篇
  1992年   236篇
  1991年   240篇
  1990年   202篇
  1989年   132篇
  1988年   102篇
  1987年   109篇
  1986年   69篇
  1985年   60篇
  1984年   49篇
  1983年   34篇
  1982年   34篇
  1981年   21篇
  1980年   16篇
  1979年   7篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The molecular geometries and dissociation energies of AnO (An = Bk–Lr) molecules were first obtained at thecoupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] level of theory. Four hybrid functionals,B3LYP, M06-2X, TPSSh, and PBE0, were also employed in the calculations for the sake of comparison. In comparison ofthe CCSD(T) results, B3LYP, TPSSh, and PBE0 functionals can obtain more appropriate results than M06-2X and MP2.The analyses on molecular orbitals show that the 7s, 6d, and 5f atomic orbitals of actinide (An) atoms participate in thebonding of An–O bonds. The partial covalent nature between An and O atoms is revealed by QTAIM analyses.  相似文献   
12.
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.  相似文献   
13.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
14.
常会  范文娟 《人工晶体学报》2018,47(11):2361-2369
使用改良的hummers法制备出的氧化石墨烯为载体,采用共沉淀法制备出磁性CoFe2O4/氧化石墨烯(MGO),再使用三乙烯四胺(TETA)对磁性CoFe2O4/氧化石墨烯进行氨基功能化,制备出氨基功能化磁性CoFe2O4/氧化石墨烯吸附剂.采用X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)和扫描电子显微镜(SEM)对TETA-MGO的物相、化学组成和微观形貌进行表征,以TETA-MGO作为吸附剂去除电镀废水中Cr(Ⅵ),探讨吸附性能和吸附机理,分析TETA-MGO在外加磁场下的液固分离和再生吸附性能.结果表明纳米级立方尖晶石相磁性CoFe2O4均匀生长于氧化石墨烯的表面和片层之间,TETA通过C-N键与磁性氧化石墨烯(MGO)相连,氨基功能化成功,活性吸附位点增点.室温下,pH =2时吸附效果最佳,吸附120 min时达到吸附平衡,平衡吸附量约为48.66 mg·g-1,TETA-MGO对Cr(Ⅵ)的吸附动力学和吸附热力学可分别使用拟二级动力学模型和Langmuir等温吸附模型描述,吸附过程主要属于化学吸附控制的单分子层吸附,使用外加磁场可以对TETA-MGO实现简单的固液分离,TETA-MGO经过6次再生吸附后,对Cr(Ⅵ)的吸附量仅下降19.67;,说明具有良好的循环再生吸附能力.  相似文献   
15.
Novel pyrene‐fused unsymmetrical phthalocyanine derivatives 2,3,9,10,16,17‐hexakis(2,6‐dimethylphenoxy)‐22,25‐diaza(2,7‐di‐tert‐butylpyrene)[4,5]phthalocyaninato zinc complex Zn[Pc(Pz‐pyrene)(OC8H9)6] ( 1 ) and 2,3,9,10‐tra(2,6‐dimethylphenoxy)‐15,18,22,25‐traza(2,7‐di‐tert‐butylpyrene)[4,5]phthalocyaninato zinc compound Zn[Pc(Pz‐pyrene)2(OC8H9)4] ( 2 ) were isolated for the first time. These unsymmetrical pyrene‐fused phthalocyanine derivatives have been characterized by a wide range of spectroscopic and electrochemical methods. In particular, the pyrene‐fused phthalocyanine structure was unambiguously revealed on the basis of single crystal X‐ray diffraction analysis of 1 , representing the first structurally characterized phthalocyanine derivative fused with an aromatic moiety larger than benzene.  相似文献   
16.
A strategy based on covalent organic frameworks for ultrafast ion transport involves designing an ionic interface to mediate ion motion. Electrolyte chains were integrated onto the walls of one-dimensional channels to construct ionic frameworks via pore surface engineering, so that the ionic interface can be systematically tuned at the desired composition and density. This strategy enables a quantitative correlation between interface and ion transport and unveils a full picture of managing ionic interface to achieve high-rate ion transport. Moreover, the effect of interfaces was scaled on ion transport; ion mobility is increased in an exponential mode with the ionic interface. This strategy not only sets a benchmark system but also offers a general guidance for designing ionic interface that is key to systems for energy conversion and storage.  相似文献   
17.
Hierarchically porous metal–organic frameworks (HP-MOFs) are promising in various applications. Most reported HP-MOFs are prepared based on the generation of mesopores in microporous frameworks, and the formed mesopores are connected by microporous channels, limiting the accessibility of mesopores for bulky molecules. A hierarchical structure is formed by constructing microporous MOFs in uninterrupted mesoporous tunnels. Using the confined space in as-prepared mesoporous silica, highly dispersed metal precursors for MOFs are coated on the internal surface of mesoporous tunnels. Ligand vapor-induced crystallization is employed to enable quantitative formation of MOFs in situ, in which sublimated ligands diffuse into mesoporous tunnels and react with metal precursors. The obtained hierarchically porous composites exhibit record-high adsorption capacity for the bulky molecule trypsin. The thermal and storage stability of trypsin is improved upon immobilization on the composites.  相似文献   
18.
JPC – Journal of Planar Chromatography – Modern TLC - A new high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous estimation of...  相似文献   
19.
Natural products with a variety of pharmacological effects are important sources for commercial drugs, and it is very crucial to develop effective techniques to selectively extract and isolate bioactive natural components from the plants against the background of sustainable development. Ionic liquids (ILs) are a kind of designable material with unique physicochemical properties, including good thermal stability, negligible vapor pressure, good solvation ability, etc. ILs have already been used in pharmaceuticals for extraction, purification, drug delivery, etc. It has been reported that multi-interactions, like hydrogen bonding, hydrophobic interactions, play important roles in the extraction of bioactive components from the plants. In this review, recent progress in the understanding of scientific essence of hydrogen bonding, the special interaction, in ILs was summarized. The extraction of various natural products, one important area in pharmaceutical, by conventional and functional ILs as well as the specific roles of multi-interactions in this process were also reviewed. Moreover, problems existing in bioactive compound extraction by ILs and the future developing trends of this area are given, which might be helpful for scientists, especially beginners, in this field.  相似文献   
20.
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D-QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号